

OSIRIS-REX:

NASA'S ASTEROID SAMPLE RETURN MISSION

The Ancient Earth

- "All we have are these stupid tantalizing zircons and the scars on the face of the Moon."
- Earth was bombarded during and shortly after accretion by asteroids and comets.
- The record of the origin of the Earth and of the origin of life has been destroyed by geologic processes.
- Meteorites tell us that these bodies delivered water and organics to the early Earth.
- Meteorites are not well connected to their parent and quickly become contaminated.

EXTRATERRESTRIAL SAMPLES

Scott Messenger and Danny Glavin collecting a meteorite. Dante Lauretta (background) searching with a metal detector.

SAMPLE RETURN MISSIONS: THE GIFT THAT KEEPS ON GIVING

- Moon (1969-72, 1976)
 NASA Apollo 11, 12, 14, 15, 16, and 17
 Soviet Luna 16, 20, and 24
- Solar wind (returned 2004)
 NASA Genesis
- Comet tail (returned 2006)
 NASA Stardust
- Stony Asteroid (returned 2010)
 JAXA Hayabusa
- Carbonaceous Asteroid
 JAXA Hayabusa2 (launch 12/14)
 NASA OSIRIS-REx (launch 9/16)

STATE-OF-THE-ART ANALYTICAL INSTRUMENTS CANNOT BE FLOWN ON SPACECRAFT

Mineralogy & Petrology
Understanding Asteroid
History

NanoSIMS

LA-ICP-MS

LC-FT-MS

Spectroscopy

Linking Asteroids to

FT-IR

Thermal

Understanding the

Yarkovsky Effect

Electron Microprobes

GC-MS/c-IRMS

GC-MS

IR Microscope

FIB

ALS Synchrotron Beamline for XANES

Future Scientists will Invent New Instruments

THERE ARE A LOT OF ASTEROIDS

Near-Earth Objects Discovered

THIS MONTH: 108
THIS YEAR: 1484
ALL TIME: 15098

Minor Planets Discovered

THIS MONTH: 2289
THIS YEAR: 40431
ALL TIME: 717768

Comets Discovered

THIS MONTH: 2
THIS YEAR: 38
ALL TIME: 3951

Observations

THIS MONTH: 798704
THIS YEAR: 14.2 million
ALL TIME: 155.7 million

Near Earth Main belt Jupiter Trojan

#osirisre

Χ

http://www.minorplanetcenter.net/

SOME HAVE BEEN VISITED

BUT ONLY ONE IS IDEAL

BENNU IS AN EXCELLENT TARGET

Very low albedo, 4% and low density, 1 g/cc.

Organic-rich meteorites are the best spectral analogs.

- There is strong evidence for loose rocks (regolith) for collection.
- The **orbital parameters** are well characterized.
- Potentially Hazardous (1:2700 chance of impacting in the late 22nd century) Asteroid.

BENNU IS EXTENSIVELY CHARACTERIZED

- Discovered on Sept. 11, 1999 by the LINEAR survey
- Observed with the Arecibo
 Planetary Radar system in Sept.
 1999 and Sept. and Oct. 2005 (also with Goldstone)
- Observed with the Kuiper 1.5-m telescope multiple times in Sept., Oct. 2005, Sept. 2011
- Observed with the NASA Infrared Telescope Facility in Sept. 1999, Sept. 2005, and August 2011
- Observed with the Spitzer Space Telescope between May 2007
- Observed with the Herschel Space Observatory, Giant Magellan Telescope, and WHT in Sept. 2011
- Observed with Hubble and Sptizer August and Sept. 2012

CHARACTERIZATION GREATLY LOWERS RISK

Comet 67P/Churyumov-Gerasimenko

Shape model based on light curve only (no radar data)

Actual Shape

Asteroid 101955 Bennu

Radar shape model

Expected to be close to the radar model

Actual Shape

Who is OSIRIS-REX?

Principal Investigator: Dante Lauretta (UA)

Deputy PI: Edward Beshore (UA)
First PI: Mike Drake (UA, dece

First PI: Mike Drake (UA, deceased)
Project Manager: Mike Donnelly (GSFC)

Flight System Manager: Rich Kuhns (LM)

Lockheed Martin Space Systems

Flight System

Sampling System

Sample Return Capsule

Mission Operations

Canadian Space Agency – OSIRIS-REx Laser Altimeter (OLA)

Arizona State University – OSIRIS-REx Thermal Emission Spectrometer (OTES)

KinetX - Navigation/Flight Dynamics

Johnson Space Center - Sample Curation

Indigo Information Services - PDS Archiving

University of Arizona

Principal Investigator & Deputy PI Project Planning and Control Officer

Mission Instrument Scientist Science Team Management

OSIRIS-REx CAMera Suite (OCAMS)

Science Processing and Operations Center (SPOC)

Data Management and Archiving Community and Public Engagement

NASA Goddard Space Flight Center

Project Management

Project Scientist & Deputy Project Scientists

Mission Systems Engineering

Safety & Mission Assurance

OSIRIS-REx Visible and near Infrared Spectrometer (OVIRS)

Flight Dynamics Lead

OSIRIS-REx Project Organization (C/D)

DSIRIS-REX. ASTEROO SAAM, E SETUIN MISSION

WHAT IS OSIRIS-REX?

Origins

 Return and analyze a sample of pristine carbonaceous asteroid regolith

Spectral Interpretation

 Provide ground truth for telescopic data of the entire asteroid population

Resource Identification

 Map the chemistry and mineralogy of a primitive carbonaceous asteroid

Security

 Measure the Yarkovsky effect on a potentially hazardous asteroid

Regolith Explorer

 Document the regolith at the sampling site at scales down to the sub-cm

- 1. Return and Analyze a Sample
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy
- 4. Understand the Interaction Between Asteroid Thermal Properties and Dynamics
- 5. Improve Asteroid Astronomy

- 1. Return and Analyze a Sample
 - The sample must be kept pristine for modern lab analyses.
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy
- 4. Understand the Interaction Between Asteroid Thermal Properties and Dynamics
- 5. Improve Asteroid Astronomy

OSIRIS-REX. ASTERIOS SAMPLE RETURN MOSION

DEFINING PRISTINE

Totally clean is impossible

- In the strictest sense contamination is any alteration of the physical, chemical, textural, or other sample state that compromises sample integrity.
- Alteration includes changing inherent states, losing sample components, or adding extraneous components,
 - e.g. changes in bulk chemistry/mineralogy, trace components, stable isotopic ratios, volatiles (ices, organics), crystallinity and phase state, remnant magnetism, grain-size distribution, grain/clast integrity, texture/structure/layering, and chemical/electronic activation state.
- · Our focus is on the addition of organics, isotopes, and trace elements
- Contamination of the sample can occur at any time and mitigation needs to be planned from day 1
 - Thus, there is no point being cleaner than conditions of curation
- The spacecraft still has to work, so contamination can be relaxed under contingency via graceful descopes
 - A contaminated sample is better than a failed mission

Species of Scientific Interest

Inorganic

Organic

Aliphatics (R-CH)
Amides (R-CONR₂)
Amines (R-NR₃)
Aromatics ([C=R-R]_c)
Carbonyls (R-COR)
Hydroxyls (R₃COH)
Amino acids
DNA

DRIVERS FOR CONTAMINATION CONTROL (CC)

Species	Indicator	Limit Derived from Chondrites (µg/g [%])	TAGSAM Surface Limit Requirement (ng/cm²)
Amino Acids	Biological contaminant, special for astrobiology	20 [30%]	180
Hydrazine	Reduces organics	nd	180
С	Organics	32 [10%]	1000
K	Lithophile	5.4 [1%]	170
Ni	Siderophile	1100 [10%]	34,000
Sn	Industrial contaminant	0.017 [1%]	0.53
Nd	Lanthanide lithophile	0.047 [1%]	1.5
Pb	Chalcophile, special for chronology	0.025 [1%]	0.79

Still too many species to verify during Assembly Test and Launch Operations (ATLO) on critical surfaces: TAGSAM head, TAGSAM launch container, Sample Return Canister (SRC)

TRANSLATING SCIENCE TO ENGINEERING

We converted the science derived contamination control concentrations to the engineering standard, IEST-STD-CC1246D, assuming the worse-than-worst case assumptions that all particles and films are pure elements.

Particle Results

worst case

Measured in bins of maximum particle size for theoretical IEST-STD-CC1246D

Particle Level	Graphite (ng/cm²)	Particle Level	Lead (ng/cm²)
level 25	0.20	level 25	1.1
level 50	2.43	level 50	13
level 100	33.8	level 100	182
level 200	556	level 200	2996
level 500	40230		

Film Results

worst case

Measured in fractions of A of non-volatile residue.

	level	mg/dm²	μg/cm²	ng/cm²	
Since the testing method	В	2	2	2000	
•	Α	1	1	1000	
produces a mass/area ² the	A/2	0.5	0.5	500	
conversion is not based on	A/5	0.2	0.2	200	
density of material.	A/10	0.1	0.1	100	
	A/100	0.01	0.01	10	
	AA3	0.001	0.001	1	

100 A/2 + 180 ng/cm² amino acids achieves our science CC requirements

except in pathological cases

OSIRIS-REX CONTAMINATION ORGANIZATION

DOCUMENTING CONTAMINATION

Monitoring in Cleanroom

Contamination Control (CC)

Particle counts
Film thickness
Amino acids

Contamination
Knowledge (CK)
Inorganic chemistry
Organic chemistry
DNA sequencing
& for future study

Monitoring on TAGSAM & SRC (CK)

For study after return

Gas and Fuel Analysis (CK)

Samples of gases and fuel for trace organics and metals

Materials Archive (CK)

≥ 1 g of required materials of potential concern for archive and future study

#osirisre

TRANSLATING ENGINEERING BACK TO SCIENCE

100 A/2 + 180 ng/cm² amino acids achieves our science CC requirements except in pathological cases

Surface	Amino Acids	Carbon (from 100 A/2)	K, Ni, Sn, Nd, Pb
Requirement	180 ng/cm ²	1000 ng/cm ²	Anomalies?
TAGSAM Head	0.96	281	No
G SRC	13.1	503	No
G Launch Container	2.32	134	No

Contamination Knowledge demonstrated the lack of pathological cases GSFC Lab analyses showed outstanding amino acid performance LM analyses showed NVR and Particulate below carbon requirements

- 1. Return and Analyze a Sample
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy
- 4. Understand the Interaction Between Asteroid Thermal Properties and Dynamics
- 5. Improve Asteroid Astronomy

- 1. Return and Analyze a Sample
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy

4. Understand the Interaction Between Asteroid Thermal Properties

and Dynamics

5. Improve Asteroid Astronomy

- 1. Return and Analyze a Sample
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy

4. Understand the Interaction Between Asteroid Thermal Properties

and Dynamics

5. Improve Asteroid Astronomy

- 1. Return and Analyze a Sample
- 2. Provide Sample Context
- 3. Understand Asteroid Geology, Dynamics, and Spectroscopy
- 4. Understand the Interaction Between Asteroid Thermal Properties and Dynamics
- **5. Improve Asteroid Astronomy**

OSIRIS-REX MISSION PLAN

OSIRIS-REX.

SPACECRAFT

INSTRUMENTS PLACE THE SAMPLE IN CONTEXT

OVIRS (GSFC) maps the reflectance albedo and spectra from $0.4 - 4.3 \mu m$

OTES (ASU) maps the thermal flux and spectra from $5-50~\mu m$

OCAMS (UA) PolyCam >500K-km range, high-resolution imaging of the surface, **SamCam** images the sample site and TAG, **MapCam** provides landmark-tracking, filter photometry.

OLA (CSA) ranging to 7 km and maps the asteroid shape and surface topography

REXIS (MIT) Student Experiment maps the elemental abundances

Radio Science (CU) reveals the mass, gravity field, internal structure, and surface acceleration distribution

SAMPLE COLLECTION SYSTEM: TAGSAM

SAMPLING SYSTEM: BUILT AND TESTED

Aug. 12th 2014
TAGSAM Test On Air Bearing
With Simulated Spacecraft

SRC Stow Testing
On Spacecraft

FLIGHT SYSTEM: BUILT AND TESTED

TEST LIKE YOU FLY

TEST LIKE YOU FLY

OSIRIS-REX DEVELOPMENT

Discovery 11 Proposal

July 16, 2004

Non-selection

Feb 2, 2005

Discovery 12 Proposal

Mar 27, 2006

Down Select (KDP-A)

Oct 30, 2006

Step 2 Proposal

June 20, 2007

Site Visit

Aug 21, 2007

Non-selection

Dec 11, 2007

✓ New Frontiers 3 Proposal

July 31, 2009

✓ Down Select (KDP-A)

Dec 17, 2009

✓ Step 2 Proposal

Jan 28, 2011 Apr 14, 2011

✓ Site Visit

May 25, 201

✓ Selection (KDP-B)

May 25, 2011

✓ MDR

May 8 – 10, 2012

✓ PDR

Mar 4 - 8, 2013

(0 "

June 1, 2013

✓ Confirmation (KDP-C)✓ CDR (KDP-D)

Apr 1 - 9, 2014

✓ SIR

Feb 24 – 27, 2015

OSIRIS-REX IMPLEMENTATION

✓ Start of ATLO

✓ PER

✓ Modal Survey

√ Acoustics

✓ PLA Shock

✓ Sine Vibe

✓ S/A Release & Shock

✓ EMI / EMC

√ Thermal Vac

✓ PSR

✓ Ship to KSC

✓ FOR / ORR

✓ SMSR

✓ MRB / KDP-E

✓ FRR

✓ LRR

✓ Launch

March 23, 2015

Oct 14 - 16, 2015

Oct 19 - 23

Nov 3

Nov 6

Nov 16 – 24

Dec 3 - 4

Jan 25 – Feb 3, 2016

Feb 18 - Mar 10

May 10 – 11

May 20

Jun 21 – 24

Aug 9

Aug 18

Sep 1

Sep 6

Sep 8: On time and under budget!

OSIRIS-REX LAUNCH

Launch 180ms into 7:05pm EDT window September 8, 2016 SLC-41, Cape Canaveral

OSIRIS-REX STATUS

Current Values 19-OCT-2016 12:00:00 UTC

Total Distance trave	eled 1.09E	E+08 km	
Distance till Rende	zvous 1.88E	+09 km	
Distance to Earth	2.24	±+07 km	
Distance to Sun	0	.865 AU	
Speed relative to E	arth	8.32 km/se	C
Speed relative to S	SB	33.7 km/se	C
One-way Light Time	9	74.7 sec	

All major subsystems have been tested and are performing nominally

OSIRIS-REX STATUS

All instruments have been powered on for initial checkouts and are currently all powered off

Instrument	Status
OCAMS: PolyCam	G
OCAMS: MapCam	G
OCAMS: SamCam	G
OVIRS (A/B)	G
OTES	G
OLA (high/low)	G
REXIS (and SXM)	G

StowCam Image L+14 days

JOIN THE MISSION ON THE WEB!

